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I. THE CUPRATE MATERIALS

The cuprate superconductors all have one thing in common - the presence of square CuO2 planes in
their crystal structures (see Fig. 1). These materials are all insulating anti-ferromagnetic materials in
the un-doped, or parent compound, state. The anti-ferromagnetism is centered in the CuO2 planes and
the Neel temperature is typically near or above room temperature. The insulating state is due in part
to the strong on-site Coulomb repulsion created when additional charge carriers try to doubly occupy
the Cu d-orbitals. Hence the d-electrons remain localized on each lattice site.

FIG. 1. Crystal structures of the Hg-based cuprate family going from 1-layer to 3-layer structures. The figures
in this document come from D. J. Scalapino, “A common thread: The pairing interaction for unconventional
superconductors,” Rev Mod Phys 84 (4), 1383-1417 (2012); and D. J. Scalapino, “Superconductivity and Spin
Fluctuations,” J Low Temp Phys 117, 179-188 (1999).

Things change when the CuO2 planes are doped with carriers, either holes or electrons. The Neel
temperature drops dramatically with carrier doping, going to zero at a critical doping (see Fig. 2).
Somewhere beyond this doping superconductivity appears, again localized in the CuO2 planes. The
phase diagram of the cuprates shows the temperature-doping plane and includes multiple phases and
states. One of the confusing aspects of these materials is that there are many competing effects acting
simultaneously, and it is difficult to unambiguously identify the precise mechanism for each observed
feature. The un-doped materials can be doped with either holes or electrons, although usually not in a
single material.

II. SUPERCONDUCTIVITY IN THE CUPRATES

It was demonstrated through flux quantization measurements by Colin Gough that the cuprates have
paired charge carriers, giving rise to flux quantization in units of Φ0 = h/2e. It was also shown that
the pairs involve a spin singlet state through measurements of the Knight shift in the superconducting

state. The interaction between the electron spin S⃗ and the nuclear moment I⃗ is Hint ∼ S⃗ · I⃗, leading
to the Knight shift K(T ) that measures the electron spin susceptibility. This is observed to go to zero
in the limit of zero temperature, consistent with a spin singlet pairing state. By the way, spin-triplet
paired superconductors show a much smaller Knight shift below Tc because the spin susceptibility of
those pairs remains high.

A number of thermodynamic properties of the cuprates suggest that they have nodes in the su-
perconducting energy gap on the Fermi surface. These include measurements of the magnetic pene-
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FIG. 2. Phase diagram of the electron-doped and hole-doped cuprate superconductors. Note the superconducting
domes as a function of doping, characteristic of materials with competing interactions between superconductivity
and other forms of long-range order.

tration depth temperature dependence at low temperatures. In conventional s-wave superconductors
the penetration depth increases from its zero temperature value slowly as a function of temperature,
λ(T ) − λ(0) ∼ e−∆(0)/kBT for T < Tc/3. This activated behavior is due to the fully-gapped nature of
the Fermi surface, ∆k⃗ ∼ ∆0. Nodal superconductors show a power-law temperature dependence of the
penetration depth, λ(T ) − λ(0) ∼ Tn, with n = 1 for the cuprates. This value of n is expected for
superconductors with line-nodes of the energy gap on the Fermi surface.

FIG. 3. Diagram of orbitals in a single CuO2 plane, along with the 1-band Hubbard model Hamiltonian.

III. PAIRING MECHANISM IN THE CUPRATES

It is commonly believed that an electronic pairing mechanism, as opposed to an electron-phonon
mechanism, is responsible for superconductivity in the cuprates. A simple model of electron transport
in the CuO2 planes is the Hubbard model. In the simple 1-band Hubbard model we treat the Cu dx2−y2

orbitals as being in a square lattice, with lobes joined to each other through O px and py orbitals (see
Fig. 3). A charge carrier can hop from one Cu to another with transfer energy t. If two charge carriers
occupy the same Cu at once, there is a large Coulomb repulsion price U >> t. The simple 1-band
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Hubbard Hamiltonian is,

H = −
∑
⟨ij⟩s

t(c+iscjs + c+jscis) +
∑
i

Uni,↑ni,↓

where nis = c+i,scis is the number operator on site i for spin s, and the notation ⟨ij⟩ refers to sites i and
j that are nearest neighbors in the square lattice. Here t is the effective one-electron transfer energy,
and U is the on-site Coulomb repulsion.

FIG. 4. (Left) Spin susceptibility χ(k⃗, k⃗′) of charge carriers in the CuO2 plane shown in one quarter of the

Brilloiun zone. (Right) Pairing interaction V (k⃗ − k⃗′) in a quarter of the Brillouin zone.

At half-filling of the band there is one electron per Cu site and the ground state shows anti-
ferromagnetic long-range order in a certain range of U/t (see for example arXiv:1505.02290, published as
Phys. Rev. X 5, 041041 (2015)). The nature of this antiferromagnetic ground state is thought by some
to be an spin-liquid state, rather than a static ordered array of spins. It is thought by some theorists that
away from half-filling, the Hubbard model is unstable to correlations that resemble superconductivity in
the low temperature limit.

How might superconductivity come about in the CuO2 planes? Berk and Schrieffer (Berk, N. F.,
and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966)) calculated a pairing interaction associated

with anti-ferromagnetic spin fluctuations of the form Vk⃗k⃗′ =
3
2U

2χ(k⃗ − k⃗′), where χ(k⃗ − k⃗′) is the spin
susceptibility at the difference wavenumber. They were interested in understanding why spin fluctuations
suppress the Tc of s-wave superconducting materials such as Pd (4d transition metal just below Ni in
the periodic table). In the cuprates, calculations show that the spin susceptibility is strongly peaked
at the corners of the Brillouin zone, (π, π), (π,−π), (−π, π), and (−π,−π) (see Fig. 4). However, the
spin susceptibility, and the resulting pairing interaction, are both strictly positive. This would seem
to preclude the possibility of superconductivity. Indeed in the s-wave (zero orbital angular momentum

pairing state) with electron momenta k⃗, −⃗k there is no superconductivity.
To understand how superconductivity comes about, it is useful to Fourier transform the pairing inter-

action into real space, V (r⃗) =
∫
eiq⃗·r⃗V (q⃗)d3q. Figure 5 shows a very strong on-site repulsion, signified

by the large positive (red) value of V (lx = ly = 0). On the other hand, there are negative values (blue)
for the pairing interaction in real space, at the nearest neighbor locations in the lx and ly directions.
This suggests that the charge carriers will avoid double occupation of a site, and preferentially choose
nearest neighbor sites that are in the directions of the oxygen atoms in the CuO2 planes. This can be
accomplished if the Cooper pairs go into an ℓ > 0 orbital angular momentum state.

Now look at the BCS gap equation, ∆k⃗ = −
∑

k⃗′ Vk⃗,⃗k′
∆

k⃗′

2
√

ξ2
k⃗′+∆2

k⃗′
. Recall that Vk⃗,⃗k′ is large and positive

and peaked in value at the corners of the Brilloiun zone. To take advantage of the large values, the system
has to change the sign of the gap ∆k⃗ for regions on opposite sides of the Fermi surface that differ in
momentum by (±π,±π) (see Fig. 6). A gap function with dx2−y2 symmetry gives a self-consistent
solution to the gap equation, and has the form ∆k⃗ = ∆Max(cos(kxa)− cos(kya)), where a is the lattice
parameter of the CuO2 planes. In this case the two charge carriers avoid the strong on-site repulsion and
go into an ℓ = 2 orbital angular momentum state. The nodes (or zeros) of this gap function point in the
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FIG. 5. Fourier transform of anti-ferromagnetic spin fluctuation pairing interaction V (r⃗) into real space (lx, ly).
Note the large positive spike at (lx, ly) = (0, 0)

diagonal directions in real space where the short range V (r⃗) is positive. There is experimental evidence
from angular resolved photoemission spectroscopy, and from several types of tunneling experiments, that
this order parameter symmetry is dominant in the cuprate superconductors.

FIG. 6. Gap functions on the Fermi surface of a cuprate superconductor. (a) Upper plot shows an isotropic
s-wave gap. (c) Lower plot shows the dx2−y2 gap function over the Fermi surface.
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